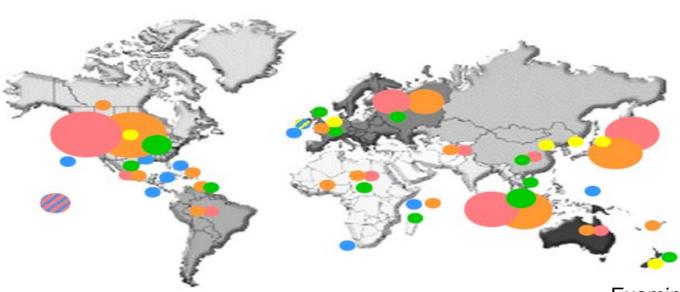
Inatreq[™] Active – a new fungicide molecule derived from fermentation

Shortlisted Candidate for the 2017 Bernard Blum Award

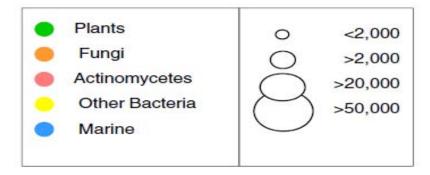
Andy Leader Global Biology Team Leader

aleader@dow.com

INATREQ[™] ACTIVE


ABIM Conference Basel, Switzerland 24 October 2017

Solutions for the Growing World


Sources of Natural Product Screening at Dow AgroSciences

Av \$285MM: cost new active registration global

Av 11.3 years: 1st EU approval

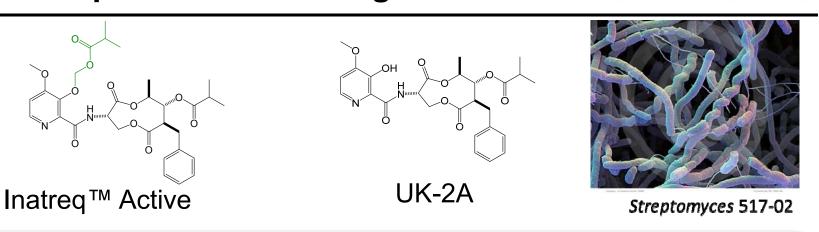
- Examine bio diverse inputs to maximize opportunity to discover novel active molecules
- Typically evaluating 30,000-40,000 inputs/year

Loso et al: Lead generation in crop protection research: Pest Manag Sci 73

Sparks & Lorsbach: Perspectives on the agrochemical industry and agrochemical discovery. Pest Manag Sci 73: 672-677

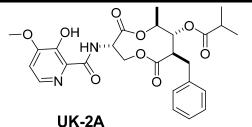
What is Inatreq?

INATREQ™ ACTIVE (fenpicoxamid) is an innovative new fungicide for the control of key diseases in cereals with additional development in banana. The active is of natural origin with outstanding biological performance with a unique target site for cereal fungicides.


Zymoseptoria tritici (septoria tritici blotch) in wheat

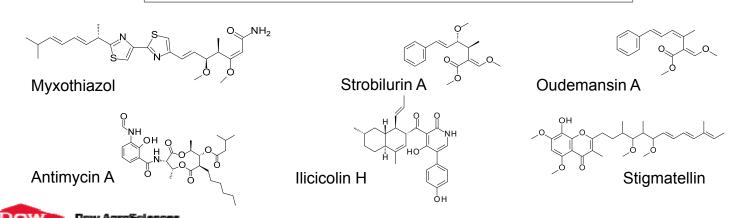
Mycosphaerella fijiensis (black Sigatoka) in banana

Inatreq™ Active Summary A natural product based fungicide

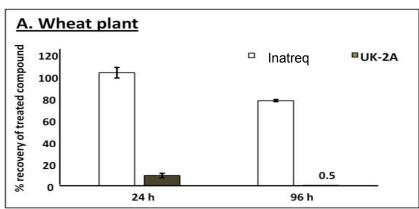


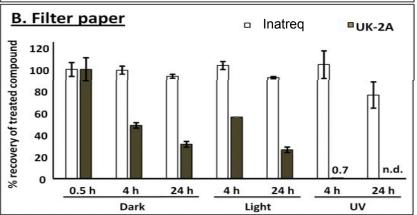
- ISO common name: Fenpicoxamid
- Derived from the natural product (UK-2A), produced by fermentation of Streptomyces sp. 517-02
- Inatreq is produced from UK-2A by a single modification step post fermentation
- Optimized version of UK-2A for improved stability and efficacy by increased bio-availability
- Inatreq converts back to the natural product UK-2A in fungi and plants
- Novel mode of action for cereal fungicides complex III inhibition at the Qi site
- No target site based cross resistance to current chemistries used in cereals
- Outstanding biological performance on major pathogen Zymoseptoria tritici (Septoria wheat leaf blotch) that can cause yield losses of 20% and limited biolocontrol solutions

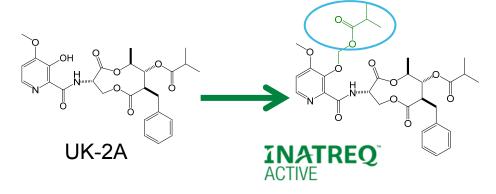
Natural product UK-2A


- Isolated from soil sample containing the actinomycete Streptomyces sp. 517-02 (1996 in Osaka, Japan)
- UK-2A has broad spectrum activity in *in vitro* fungal growth inhibition assays and greenhouse tests
- Inhibits energy production in mitochondria. Action on complex III in the electron transport chain
- Mode of action appears commonly used in nature providing microorganisms with a competitive advantage

UK-2A crystals


Other natural products acting on complex III



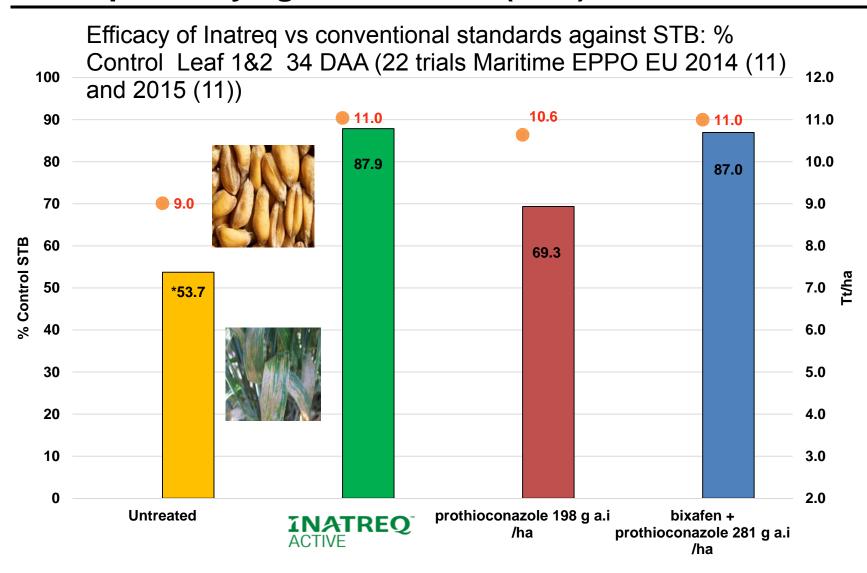


Invention of Inatreq

- UK-2A very active when tested *in-vivo*
- Greenhouse and field efficacy of UK-2A is limited by oxidation and UV instability
- Single step modification stabilizes the molecule on plant surface and improves control



Compound	Z. tritici (leaf blotch)		<i>P. triticina</i> (brown rust)	
	1DP	3DC	1DP	3DC
UK-2A	6.04	83.7	3.71	36.05
Inatreq	0.49	1.32	0.16	0.82
EC ₅₀ ratio UK-2A/ Inatreq	12.33	63.41	23.19	43.96


2017 Bernard Blum Award Nomination

Inatreq Efficacy against Z. tritici (STB)

Inatreq Summary

- Derived from the natural product UK-2A and produced by fermentation
- Simple single step modification of UK-2A post fermentation to form Inatreq
 - Improves stability and hence maximizes efficacy by increasing bio-availability
 - Modification does NOT impact the environmental or toxicology profile compared to UK-2A.
- Fungicidal activity requires conversion of Inatreq back to the natural product UK-2A,
 - Occurs in both fungi and plants without changing active function of UK-2A
- Innovative fungicide to address resistance and regulatory challenges for cereal growers
 - Inatreq is a Qi inhibitor fungicide and provides a new target site in cereals
 - No cross-resistant to existing chemistries:
 - Resistance management: Inatreq should only be used alone
- Inatreq has a favourable toxicological profile comparable to UK-2A
- Inatreq can provide a biocontrol solution to cereal farmers for disease control alongside other natural products: limited effective bio-control solutions available today for STB control in cereals and many conventional solutions are under regulatory and resistance pressure

First Published Scientific Paper

Research Article

Received: 5 January 2017 Revised: 22 March 2017

Accepted article published: 4 May 2017

Published online in Wiley Online Library: 6 July 2017

(wileyonlinelibrary.com) DOI 10.1002/ps.4588

Biological characterization of fenpicoxamid, a new fungicide with utility in cereals and other crops

W John Owen,* Chenglin Yao, Kyung Myung, Greg Kemmitt, Andrew Leader, Kevin G Meyer, Andrew J Bowling, Thomas Slanec and Vincent J Kramer

Abstract

BACKGROUND: The development of novel highly efficacious fungicides that lack cross-resistance is extremely desirable. Fenpicoxamid (Inatreq™ active) possesses these characteristics and is a member of a novel picolinamide class of fungicides derived from the antifungal natural product UK-2A.

RESULTS: Fenpicoxamid strongly inhibited *in vitro* growth of several ascomycete fungi, including *Zymoseptoria tritici* (EC_{50} , 0.051 mg L^{-1}). Fenpicoxamid is converted by *Z. tritici* to UK-2A, a 15-fold stronger inhibitor of *Z. tritici* growth (EC_{50} , 0.0033 mg L^{-1}). Strong fungicidal activity of fenpicoxamid against driver cereal diseases was confirmed in greenhouse tests, where activity on *Z. tritici* and *Puccinia triticina* matched that of fluxapyroxad. Due to its novel target site (Q_i site of the respiratory cyt bc1 complex)

Open availability on-line on Wiley Press Other papers are planned

Dow AgroSciences Open to Collaborations

Thank you

Visit http://www.dowagro.com Innovation > Our Collaborations

Email non-confidential information to: AgTech@dow.com

